Abstract
The atomic buckling in 2D "Xenes" (such as silicene) fosters a plethora of exotic electronic properties such as a quantum spin Hall effect and could be engineered by external strain. Quantifying the buckling magnitude with subangstrom precision is, however, challenging, since epitaxially grown 2D layers exhibit complex restructurings coexisting on the surface. Here, we characterize using low-temperature (5 K) atomic force microscopy (AFM) with CO-terminated tips assisted by density functional theory (DFT) the structure and local symmetry of each prototypical silicene phase on Ag(111) as well as extended defects. Using force spectroscopy, we directly quantify the atomic buckling of these phases within 0.1-Å precision, obtaining corrugations in the 0.8- to 1.1-Å range. The derived band structures further confirm the absence of Dirac cones in any of the silicene phases due to the strong Ag-Si hybridization. Our method paves the way for future atomic-scale analysis of the interplay between structural and electronic properties in other emerging 2D Xenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.