Abstract

Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

Highlights

  • Malachite green (MG) is a cationic triarylmethane dye that is commonly used as a biocide in aquaculture worldwide

  • Figure shows the of a pure water sample spiked with

  • Figure shows the spectrum of a pure water sample spiked with

Read more

Summary

Introduction

Malachite green (MG) is a cationic triarylmethane dye that is commonly used as a biocide in aquaculture worldwide. It provides efficient defense against fungal attacks, protozoan infections and other diseases in aquatic organisms, e.g., caused by helminths [1]. MG and its metabolite, leucomalachite green (LMG), can remain in aquatic animal tissues and the aquiculture environment for a long time, which is of concern since it has been reported to cause carcinogenesis, mutagenesis, chromosomal fractures, teratogenicity and respiratory toxicity [1]. In China, the limit of detection of MG in aquiculture animal tissue is 2 μg·kg−1 using an official method (national standard GB/T 19857-2005 of PR China).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call