Abstract
Turquoise is one of the key ingredients in some magical Tibetan medicines, and its quality and content directly affect the medicine's effectiveness. In this paper, laser-induced breakdown spectroscopy (LIBS) technology was first applied to detect the raw materials of Tibetan medicine. The traditional data analysis methods could not meet the practical requirements of modern Tibetan medicine factories due to matrix effects. The concept of correlation coefficient (ρ) in pattern recognition technique was introduced as an evaluation index, and the model was established based on the intensities of the four characteristic Al and Cu spectral lines of the samples for different contents of turquoise, which was applied to estimate the contents of turquoise in the samples to be tested. We detected the LIBS on 126 samples of raw ore from 42 areas in China and evaluated the turquoise content using self-developed software with an error of <10%. This paper's technical testing process and methods can also be applied to test other mineral compositions and provide technical support for modernizing and standardizing Tibetan medicines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.