Abstract
Phenol is a common pollutant found in wastewater, and its allowable discharge limit is 0.5 parts-per-million (ppm). Therefore, it is critical to monitor phenol in the sub-ppm range with high sensitivity and a low limit of detection. Herein, we report a quantitative method for detecting phenol in industrial wastewater through square wave voltammetry (SWV), in which phenol is oxidized to phenoxyl radicals and then became catechol and hydroquinone for detection. By using this method, phenol in the sub-ppm range can be detected reliably over a wide pH range. The sensitivity can be further improved by using a pre-concentration step for phenol before scanning. The method has a limit of detection of 0.1 ppb for phenol. Finally, three graphite electrodes were applied as working, counter and reference electrodes, respectively, in a millifluidic device for continuous detection of phenol in industrial wastewater flowing at 300 μL/min. Because of its simplicity, the sensor can be mass-produced and deployed on a large scale to monitor phenol in industrial wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.