Abstract
A method for the detection of Cucumber vein yellowing virus (CVYV) that combines reverse transcription with real-time PCR (SYBR ® Green chemistry) was developed using specific primers designed from a nucleotide sequence of the RNA polymerase gene (NIb) conserved among all the available CVYV strains. This method provided a linear assay over five to six orders of magnitude and reproducibly detected titres as low as 10 3 molecules of the target CVYV cDNA. Real-time PCR gave reproducible results for the quantification of CVYV in young leaves of susceptible and resistant cucumber landraces after mechanical inoculation. Significant differences in the starting amount of target cDNA were found between the analyzed genotypes, indicating differences in viral accumulation that correlated to their different levels of resistance. Real-time PCR results validated our previous findings using slot–blot hybridization, the dominance of the strong resistance to CVYV displayed by C.sat 10, and provided improved reliability and sensitivity of detection. This method has great potential in resistance breeding for germplasm screening, characterization of resistance mechanisms and genetic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.