Abstract

Historically, Dewar-Chatt-Duncanson (DCD) model is a heuristic device to advance the development of organometallic chemistry and deepen our understanding of the metal-ligand bonding nature. Zeise's ion, the first man-made organometallic compound and a quintessential transition metal-olefin complex, was qualitatively explained using the DCD bonding scheme in 1950s. In this work, we quantified the explicit contributions of the σ donation and π back-donation to the metal-ligand bonding in Zeise and its family ions, [PtX3 L]- (X=F, Cl, Br, I, and At; L=C2 H4 , CO, and N2 ), using state-of-the-art quantum chemical calculations and energy decomposition analysis. The relative importance of the σ donation and π back-donation depends on both X and L, with [PtCl3 (C2 H4 )]- being a critical case in which the σ donation is marginally weaker than the π back-donation. The changes along this series are controlled by the energy levels of the correlated molecular orbitals of PtX3 - and ligand L. This study deepens our understanding of the bonding properties for transition metal complexes beyond the qualitative description of the DCD model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call