Abstract

The alteration of material tensile properties is inevitable after material subjects to irreversible damage. This paper is devoted to quantify the influence of pre-fatigue damage on the residual tensile properties of P92 steel. Various pre-fatigue tests followed by uniaxial tensile tests are conducted at 650 °C. Results indicate that higher strain amplitude of pre-fatigue loading leads to reduction in residual yield stress and ultimate tensile stress (UTS). In addition, the evolution of yield stress and UTS in terms of pre-fatigue lifetime fraction shows two stages, namely initial rapid degradation stage and linear decreasing stage. The microstructure observation manifests that the growth of martensite lath width and the decline of dislocation density during pre-fatigue loadings contribute to the degradation of subsequent tensile strength. However, the reduction in dislocation density plays a dominant role. Furthermore, a pre-fatigue damage definition is proposed. The variations of residual yield stress and UTS can be described linearly with respect to the defined pre-fatigue damage. The newly proposed linear relationships are convenient for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.