Abstract
Quantitative analysis of thin-section CT of the chest has a growing role in the clinical evaluation and management of diffuse lung diseases. This heterogeneous group includes diseases with markedly different prognoses and treatment options. Quantitative tools can assist in both accurate diagnosis and longitudinal management by improving characterization and quantification of disease and increasing the reproducibility of disease severity assessment. Furthermore, a quantitative index of disease severity may serve as a useful tool or surrogate endpoint in evaluating treatment efficacy. The authors explore the role of quantitative imaging tools in the evaluation and management of diffuse lung diseases. Lung parenchymal features can be classified with threshold, histogram, morphologic, and texture-analysis-based methods. Quantitative CT analysis has been applied in obstructive, infiltrative, and restrictive pulmonary diseases including emphysema, cystic fibrosis, asthma, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, connective tissue-related interstitial lung disease, and combined pulmonary fibrosis and emphysema. Some challenges limiting the development and practical application of current quantitative analysis tools include the quality of training data, lack of standard criteria to validate the accuracy of the results, and lack of real-world assessments of the impact on outcomes. Artifacts such as patient motion or metallic beam hardening, variation in inspiratory effort, differences in image acquisition and reconstruction techniques, or inaccurate preprocessing steps such as segmentation of anatomic structures may lead to inaccurate classification. Despite these challenges, as new techniques emerge, quantitative analysis is developing into a viable tool to supplement the traditional visual assessment of diffuse lung diseases and to provide decision support regarding diagnosis, prognosis, and longitudinal evaluation of disease. ©RSNA, 2019.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.