Abstract
Phase-field models such as the Allen–Cahn equation may give rise to the formation and evolution of geometric shapes, a phenomenon that may be analyzed rigorously in suitable scaling regimes. In its sharp-interface limit, the vectorial Allen–Cahn equation with a potential with N\geq 3 distinct minima has been conjectured to describe the evolution of branched interfaces by multiphase mean curvature flow. In the present work, we give a rigorous proof for this statement in two and three ambient dimensions and for a suitable class of potentials: as long as a strong solution to multiphase mean curvature flow exists, solutions to the vectorial Allen–Cahn equation with well-prepared initial data converge towards multiphase mean curvature flow in the limit of vanishing interface width parameter \varepsilon\searrow 0 . We even establish the rate of convergence O(\varepsilon^{1/2}) . Our approach is based on the gradient-flow structure of the Allen–Cahn equation and its limiting motion: building on the recent concept of “gradient-flow calibrations” for multiphase mean curvature flow, we introduce a notion of relative entropy for the vectorial Allen–Cahn equation with multi-well potential. This enables us to overcome the limitations of other approaches, e.g. avoiding the need for a stability analysis of the Allen–Cahn operator or additional convergence hypotheses for the energy at positive times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.