Abstract

ABSTRACT Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15°) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ~ 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in bypass ramp settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of downstepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgressive systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (>> 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow-water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustatic influence. With rates of sea-level change so high, typical systems tracts do not form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call