Abstract
Abstract We have estimated abundance and distribution of automicrite, marine cements and skeletal grains in the Triassic Sella massif, an isolated platform flanked by steep (25–35°) clinoforms. 108 samples were taken at constant intervals from measured sections of the major zones of the platform edifice: the platform top, margin–upper slope, and lower slope. In a first step, carried out in the field and on hand specimen, purely detrital deposits were separated from automicrite facies, i.e. beds with automicrite, cement-filled, primary vugs and admixtures of skeletal carbonate and lithoclasts. In the second step, samples with automicrite facies were thin-sectioned and point counted. The categories used for point counting were (a) automicrite, (b) vugs and cement, (c) microspar or neomorphic spar, (d) skeletal grains and (e) internal sediments. At the platform top 46% of samples are pure detrital deposits, 27% consist of automicrite facies and 27% are too strongly altered by dolomitization to allow classification. At the margin–upper slope 68% of samples consist of automicrite facies, 22% are pure detrital sediments and 10% are strongly altered. At the lower slope 63% are detrital deposits, 10% automicrite facies and 27% are extensively dolomitized. The most important contributors to the automicrite facies are automicrite (41% on the platform top, 29% on the margin–upper slope, 28% on the lower slope) and early marine cement (35% on the platform top, 48% on the margin–upper slope, 27% on the lower slope). The amount of skeletal grains is less than 10%. The automicrite facies stabilized the platform margin and upper slope. Automicrite, abundant early marine cements and micro-organisms such as Tubiphytes , formed a rigid framework, thus substituting for the lack of a metazoan reef. On the upper slopes, the framework of automicrite facies stabilized the slope but intermittently. The automicrite layers are frequently dissected by sediment-filled fractures or are broken into clasts. We assume that they slid on the layers of loose detritus. Bigger slides turned into rubbly debris flows that formed metre-thick breccias at the lower slope and the proximal basin floor. The planar shape and steep angle of the clinoforms indicate that the large-scale geometry of the slope was not controlled by the automicrite but rather by non-cohesive layers of sand and rubble piled up to the angle of repose. The production mode of the Sella is comparable of that of a (mud) mound factory. This factory was highly productive: in 1 Ma, the platform aggraded over 300 m and prograded over 2000 m in all directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.