Abstract

Chinese hamster ovary cells used for pharmaceutical protein production express non-infectious retrovirus-like particles. To assure the safety of pharmaceutical proteins, validation of the ability of manufacturing process to clear retrovirus-like particles is required for product registration. Xenotropic murine leukemia virus (X-MuLV) is often used as a model virus for validation studies. Some chromatography procedures used for pharmaceutical protein purification utilize low pH (<pH 4.0) elution buffers which readily inactivate X-MuLV. Therefore, cell-based infectivity assays are unable to evaluate the physical removal of X-MuLV by these chromatography procedures. To distinguish viral inactivation by low pH treatment from viral removal by chromatography, a quantitative competitive reverse transcription PCR method capable of quantifying both infectious and non-infectious X-MuLV has been developed. This method quantifies X-MuLV particles in chromatography pools by quantifying the X-MuLV particle RNA (pRNA). The difference between the amount of X-MuLV pRNA in the load pool and the product-containing elution pool represents the extent of X-MuLV removal. This method is an extremely powerful complement to cell based-infectivity assays as it allows physical removal of X-MuLV by chromatography and filtration procedures to be distinguished from X-MuLV inactivation when buffers with the ability to inactivate retrovirus are used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call