Abstract

Perfume identification (PI) based on an electronic nose (EN) can be used for exposing counterfeit perfumes more time-efficiently and cost-effectively than using gas chromatography and mass spectrometry instruments. During the past five years, decision-tree-based ensemble learning methods, also called tree ensemble learning methods, have demonstrated excellent performance when solving multi-class classification problems. However, the performance of tree ensemble learning methods for the EN-based PI problem remains uncertain. In this paper, four well-known tree ensemble learning classification methods, random forest (RF), stagewise additive modeling using a multi-class exponential loss function (SAMME), gradient-boosting decision tree (GBDT), and extreme gradient boosting (XGBoost), were implemented for PI using our self-designed EN. For fair comparison, all the tested classification methods used as input the same feature data extracted using principal component analysis. Moreover, two benchmark methods, neural network and support vector machine, were also tested with the same experimental setup. The quantitative results of experiments undertaken demonstrated that the mean PI accuracy achieved by XGBoost was up to 97.5%, and that XGBoost outperformed other tested methods in terms of accuracy mean and variance based on our self-designed EN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call