Abstract

By implementing neuromorphic paradigms in processing visual information, machine learning became crucial in an ever-increasing number of applications of our everyday lives, ever more performing but also computationally demanding. While a pre-processing of the information passively in the optical domain, before optical-electronic conversion, can reduce the computational requirements for a machine learning task, a comprehensive analysis of computational requirements for hybrid optical-digital neural networks is thus far missing. In this work we critically compare and analyze the performance of different optical, digital and hybrid neural network architectures with respect to their classification accuracy and computational requirements for analog classification tasks of different complexity. We show that certain hybrid architectures exhibit a reduction of computational requirements of a factor >10 while maintaining their performance. This may inspire a new generation of co-designed optical-digital neural network architectures, aimed for applications that require low power consumption like remote sensing devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call