Abstract

BackgroundAfter yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry.Methodology/Principal FindingsSPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data.Conclusions/SignificanceIn this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization.

Highlights

  • Intra-arterial radioembolization (RE) using microspheres labeled with the high-energy beta-emitter yttrium-90 (90Y), is used in clinical practice for treatment of unresectable liver tumours [1,2].Prior to RE, prophylactic coil-embolization of arteries communicating with the gastrointestinal (GI) tract is performed, followed by administration of technetium-99m macroaggregated-albumin (99mTc-MAA) particles

  • Conclusions/Significance: In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization

  • The noise level in the PET images was substantially reduced when reconstructed with 1 iteration and a 15 mm full-width at halfmaximum (FWHM) post-reconstruction filter (equal noise (EQN) PET), approximately to the noise level of the SPECT images

Read more

Summary

Introduction

Intra-arterial radioembolization (RE) using microspheres labeled with the high-energy beta-emitter yttrium-90 (90Y), is used in clinical practice for treatment of unresectable liver tumours [1,2].Prior to RE, prophylactic coil-embolization of arteries communicating with the gastrointestinal (GI) tract is performed, followed by administration of technetium-99m macroaggregated-albumin (99mTc-MAA) particles. Intra-arterial radioembolization (RE) using microspheres labeled with the high-energy beta-emitter yttrium-90 (90Y), is used in clinical practice for treatment of unresectable liver tumours [1,2]. After administration of the 90Y microspheres, a post-therapy 90Y Bremsstrahlung SPECT scan is performed for two reasons. Post-therapy imaging facilitates estimation of the tumour and non-tumour absorbed radiation dose on the image-based microsphere distribution. After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and stateof-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.