Abstract
The predictions of nine mathematical models of radiocesium ( 137Cs) cycling in forest ecosystems were evaluated through a model–data comparison on the basis of a scenario consisting of an acute dry deposition of 137Cs over a pine forest located in the Ukrainian territory affected by the Chernobyl accident (Zhitomir region). The forest compartments included in the comparisons were: organic and mineral soil layers, bilberries, fungi, roe deer, and different parts of the tree: bark, needles, shoots, and wood. The model predictions and the data agreed within a factor of 1.1 to 65 depending on the model and forest compartment. Statistically significant differences in the degree of agreement between model predictions and experimental data could be demonstrated for some models and forest compartments. The observed differences suggest that efforts for improving model predictions of radiocesium transfer to tree wood, needles, and shoots should be directed to a better simulation of the processes of root uptake and translocation of the radionuclide within the tree.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.