Abstract

To develop nonviral gene vectors that are sufficient for clinical application, it is necessary to understand why and to what extent nonviral vectors are inferior to viral vectors, which in general show a more efficient transfection activity. This study describes a systematic and quantitative comparison of the cellular uptake and subsequent intracellular distribution (e.g., endosome/lysosome, cytosol, and nucleus) of exogenous DNA transfected by viral and nonviral vectors in living cells, using a combination of TaqMan PCR and a recently developed confocal image-assisted three-dimensionally integrated quantification method. As a model, adenovirus (Ad) and Lipofectamine Plus (LFN) were used for comparison since they are highly potent and widely used viral and nonviral vectors, respectively. The findings indicate that the efficiency of cellular uptake for LFN is significantly higher than that for Ad. Once taken up by a cell, Ad exhibited comparable endosomal escape and slightly higher nuclear transfer efficiency compared with LFN. In contrast, LFN requires 3 orders of magnitude more intranuclear gene copies to exhibit a transgene expression comparable to that of the Ad, suggesting that the difference in transfection efficiency principally arises from differences in nuclear transcription efficiency and not from a difference in intracellular trafficking between Ad and LFN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call