Abstract

Laser induced thermal therapy combined with the wavelength dependent optical absorption and heating power of gold-coated silica nanoshells can achieve therapeutic heating localized to a tumor volume. Accurate modeling of the spatiotemperal thermal distribution associated with this heating is essential for accurate thermal therapy treatment planning. The optical diffusion approximation (ODA), used in numerous applications of laser fluence in biology, is compared to the delta P1 optical approximation in phantoms containing different concentrations of nanoshells for several laser powers. Results are compared with temperature maps generated by magnetic resonance temperature imaging techniques and show that the delta P1 approximation is more effective than ODA at modeling the thermal distribution. The discrepancy between the two is especially prominent in phantoms with higher nanoshell concentrations where ODA was shown to give unsatisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call