Abstract
Because of the pathological indication and the physiological functions, bile acids (BAs) have occupied the research hotspot in recent decades. Although extensive efforts have been paid onto BAs sub-metabolome characterization, as the subfamily, BA glucuronides (gluA-BAs) profile is seldom concerned. Here, we made efforts to develop a LC-MS/MS program enabling quantitative gluA-BAs sub-metabolome characterization and to explore the differential species in serum between intrahepatic cholestasis of pregnancy (ICP) patients and healthy subjects. To gain as many authentic gluA-BAs as possible, liver microsomes from humans, rats, and mice were deployed to conjugate glucuronyl group to authentic BAs through in vitro incubation. Eighty gluA-BAs were captured and subsequently served as authentic compounds to correlate MS/MS spectral behaviors to structural features using squared energy-resolved MS program. Optimal collision energy (OCE) of [M-H]->[M-H-176.1]- was jointly administrated by [M-H]- mass and glucuronidation site, and identical exciting energies corresponding to 50% survival rate of 1st-generation fragment ion (EE50) were observed merely when the aglycone of a gluA-BA was consistent with the suspected structure. Through integrating high-resolution m/z, OCE, and EE50 information to identify gluA-BAs in a BAs pool, 97 ones were found and identified, and further, quantitative program was built for all annotated gluA-BAs by assigning OCEs to [M-H]->[M-H-176.1]- ion transitions. Quantitative gluA-BAs sub-metabolome of ICP was different from that of the healthy group. More GCDCA-3-G, GDCA-3-G, TCDCA-7-G, TDCA-3-G, and T-β-MCA-3-G were distributed in the ICP group. Above all, this study not only offered a promising analytical tool for in-depth gluA-BAs sub-metabolome characterization, but also clarified gluA-BAs allowing the differentiation of ICP and healthy subjects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.