Abstract

In this paper, we present a quantitative comparison of two agile modulation techniques employed by cognitive radio transceivers operating in a dynamic spectrum access (DSA) network. One of the modulation technique is non-contiguous orthogonal frequency division multiplexing (NC-OFDM), which is designed to avoid interference with the transmissions of incumbent users by deactivating subcarriers within their vicinity. The other modulation technique under study is a variant of multicarrier code division multiple access (MC-CDMA). Although several studies comparing conventional OFDM and MC-CDMA has been conducted in literature to justify robust error performance of MCCDMA, a quantitative performance evaluation of these schemes has not been performed when employed in a DSA network. Due to deactivated subcarriers in DSA networks, in this paper we showed their performance can be significantly different from the conventional setup. Analytical expressions for the error probability of an NC-OFDM transceiver have been derived and compared with computer simulation results. The results show that the error robustness of NC-OFDM is relatively constant regardless of the number of deactivated subcarriers, unlike MC-CDMA transmissions, whose error performance degrades with an increase in deactivated subcarriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.