Abstract
Methylglyoxal (MGO) is a highly reactive metabolite mainly formed as a byproduct of glycolysis. Elevated MGO has been considered as a risk factor for several diseases including diabetes and neurodegeneration. While MGO modifications on proteins were globally profiled, the cross-links between proteins induced by MGO in proteomes are unexplored to date. Here, we reported a quantitative chemoproteomic platform based on mass shifts that enables identification of events of protein cross-links induced by MGO in proteomes. A total of 66 cross-linked targets were identified from the profiling experiments when cells were treated with MGO, among which the components of functional complexes such as spliceosomes and ribosomes were enriched. We found that inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) was homocross-linked by MGO and the active-site Cys331 was critical for mediating the cross-link, which in turn affected IMPDH2's activity. Our study has provided new clues for the functional impact in proteomes by MGO, and the methodology can be, in principle, applied to profile protein cross-links induced by other reactive metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.