Abstract
Cell traction force (CTF) is a kind of active force that is a cell senses external environment and actively applies to the contact matrix which is currently a representative stress in cell-extracellular matrix (ECM) interaction. Studying the distribution and variation of CTF during cell-ECM interaction help to explain the impact of physical factors on cell behaviors from the perspective of mechanobiology. However, most of the strategies of characterizing CTF are still limited by the measurement needs in three-dimensional (3D), quantitative characteristics and in vivo condition. Microsphere stress sensor (MSS) as a new type of technology is capable of realizing the quantitative characterization of CTF in 3D and in vivo. Herein, we employed microfluidic platform to design and fabricate MSS which possesses adjustable fluorescent performances, physical properties, and size ranges for better applicable to different cells (3T3, A549). Focusing on the common tumor cells behaviors (adhesion, spreading, and migration) in the process of metastasis, we chose SH-SY5Y as the representative research object in this work. We calculated CTF with the profile and distribution to demonstrate that the normal and shear stress can determined different cell behaviors. Additionally, CTF can also regulate cell adhesion, spreading, and migration in different cell states. Based on this method, the quantitative characterization of CFT of health and disease cells can be achieved, which further help to study and explore the potential mechanism of cell-ECM interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.