Abstract

Polyethylene terephthalate (PET) is one of the most commonly used substrate materials in the field of flexible electronics, and its stress-induced birefringence often has a detrimental effect on the optical properties of the device. Therefore, a deep and systematic understanding of the stress-optical properties of PET films is crucial for device design and manufacture. The photoelastic method is a direct optical measurement technique based on the stress-induced birefringence effect of materials, which has the advantages of being nondestructive and noncontact. In this work, the photoelastic method was used to quantitatively characterize the anisotropy of the stress-optical properties of PET films under the uniaxial stress state. First, a self-built reflection-transmission coaxial bidirectional photoelasticity measurement system was developed by means of a combination of transmission and reflection photoelasticity. Then, the stress-optical coefficients and isoclinic angles of PET films with different stretching angles were measured. Finally, the linear combinations of the photoelastic tensor components and refractive-index-related parameters were determined by fitting the analytical relationship between the stress-optical coefficients and isoclinic angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.