Abstract

Functionally meaningful reversible protein-membrane interactions mediate many biological events. Fluorescence correlation spectroscopy (FCS) is increasingly used to quantitatively study the non-reversible binding of proteins to membranes using lipid vesicles in solution. However, the lack of a complete description of the phase and statistical equilibria in the case of reversible protein-membrane partitioning has hampered the application of FCS to quantify the partition coefficient (Kx). In this work, we further extend the theory that describes membrane-protein partitioning to account for spontaneous protein-membrane dissociation and reassociation to the same or a different lipid vesicle. We derive the probability distribution of proteins on lipid vesicles for reversible binding and demonstrate that FCS is a suitable technique for accurate Kx quantification of membrane-protein reversible association. We also establish the limits to Kx determination by FCS studying the Cramer-Rao bound on the variance of the retrieved parameters. We validate the mathematical formulation against reaction-diffusion simulations to study phase and statistical equilibria and compare the Kx obtained from a computational FCS titration experiment with the experimental ground truth. Finally, we demonstrate the application of our methodology studying the association of anti-HIV broadly neutralizing antibody (10E8-3R) to the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.