Abstract

Size, shape, internal defects are very important properties of explosives crystals. These parameters play a role on both the explosive formulation processing and the detonic behavior of the explosive formulations. The use of explosive crystals free of solvent inclusions leads to decrease the shock sensitivity of cast explosive formulations. Many efforts for processing such high quality explosive crystals have been done and are still in progress. Qualitative observations of internal crystal defects can be performed by optical microscopy with matching refractive index. The purpose of this paper is to provide two accurate quantitative tools for internal crystal defects measurements. The first method is based on accurate measurements of the crystal apparent density. The second method records the mass of the species entrapped in the crystal internal cavities. Experiments are performed on two RDX batches. The strong correlation recorded between the results of the two complementary methods validates the measurements. Apparent density measurements provide an accurate global characterization of the internal defects population of a crystal batch sorting the crystals in function of their apparent density. The second method is a tool to identify the species entrapped in the crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.