Abstract

Actin is known to be synthesized both during oogenesis and in cleavage-stage embryos in mice. Cytoskeletal beta-actin appears to be the major component, followed by gamma-actin, but the synthesis of alpha-actin has also been inferred from protein electrophoretic patterns. We have studied the expression of cytoskeletal (beta- and gamma-) and sarcomeric (alpha-cardiac and alpha-skeletal) actin genes at the level of the individual mRNAs in blot hybridization experiments using isoform-specific RNA probes. The results show that there are about 2 x 10(4) beta-actin mRNA molecules in the fully grown oocyte; this number drops to about one-half in the egg and less than one-tenth in the late two-cell embryo but increases rapidly during cleavage to about 3 x 10(5) molecules in the late blastocyst. The amount of gamma-actin mRNA is similar to that of beta-actin in oocytes and eggs but only about 40% as much in late blastocysts, indicating a differential accumulation of these mRNAs during cleavage. The developmental pattern of beta- and gamma-actin mRNA provides a striking example of the transition from maternal to embryonic control that occurs at the two-cell stage and involves the elimination of most or all of the maternal actin mRNA. There was no detectable alpha-cardiac or alpha-skeletal mRNA (i.e., less than 1,000 molecules per embryo) at any stage from oocyte to late blastocyst, suggesting that the sarcomeric actin genes are silent during preimplantation development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.