Abstract

Quantitative measures of cartilage morphology (i.e., thickness) represent potentially powerful surrogate endpoints in osteoarthritis (OA). These can be used to identify risk factors of structural disease progression and can facilitate the clinical efficacy testing of structure modifying drugs in OA. This paper focuses on quantitative imaging of articular cartilage morphology in the knee, and will specifically deal with different cartilage morphology outcome variables and regions of interest, the relative performance and relationship between cartilage morphology measures, reference values for MRI-based knee cartilage morphometry, imaging protocols for measurement of cartilage morphology (including those used in the Osteoarthritis Initiative), sensitivity to change observed in knee OA, spatial patterns of cartilage loss as derived by subregional analysis, comparison of MRI changes with radiographic changes, risk factors of MRI-based cartilage loss in knee OA, the correlation of MRI-based cartilage loss with clinical outcomes, treatment response in knee OA, and future directions of the field.

Highlights

  • Magnetic resonance imaging (MRI) has revolutionized the field of clinical research in osteoarthritis (OA) because it can directly visualize all diarthrodial tissues, including cartilage, bone, menisci, ligaments, synovium, and others

  • This paper focuses on quantitative imaging of articular cartilage morphology in the knee, and will deal with different cartilage morphology outcome variables and regions of interest, the relative performance and relationship between cartilage morphology measures, reference values for MRI-based knee cartilage morphometry, imaging protocols for measurement of cartilage morphology, sensitivity to change observed in knee OA, spatial patterns of cartilage loss as derived by subregional analysis, comparison of MRI changes with radiographic changes, risk factors of MRI-based cartilage loss in knee OA, the correlation of MRI-based cartilage loss with clinical outcomes, treatment response in knee OA, and future directions of the field

  • Quantitative measurements of cartilage morphology fully exploit the 3D nature of MRI data sets [1, 2]; their strength is that they are less observerdependent and more objective than scoring methods, and that relatively small changes in cartilage thickness, which occur relatively homogeneously over larger areas may be detected over time, which are not apparent to the naked eye

Read more

Summary

Introduction

Magnetic resonance imaging (MRI) has revolutionized the field of clinical research in osteoarthritis (OA) because it can directly visualize all diarthrodial tissues, including cartilage, bone, menisci, ligaments, synovium, and others. Quantitative measurements of cartilage morphology (structure) fully exploit the 3D nature of MRI data sets [1, 2]; their strength is that they are less observerdependent and more objective than scoring methods, and that relatively small changes in cartilage thickness, which occur relatively homogeneously over larger areas may be detected over time, which are not apparent to the naked eye This is important, as the progression of structural changes in OA has generally been shown to be slow, both when being evaluated by radiography [4,5,6] and MRI [6,7,8,9,10].

Cartilage Morphology Outcome Variables and Regions of Interest in the Knee
Relative Performance and Relationship between Cartilage Morphology Measures
Reference Values for MRI-Based Knee Cartilage Morphometry
Rates of Change and Sensitivity to Change Observed in Knee OA
Comparison of MRI Changes with Radiographic Changes in Knee OA
11. Future Directions of the Field
Findings
Disclosures
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.