Abstract

AbstractPAMAM dendrimer/reduced graphene oxide nanocomposite modified pencil graphite electrode (PAMAM/RGO/PGE) was used to fabricate an electrochemical DNA biosensor for determination of Rituxan (RTX) at low concentrations, for the first time. The fabricated biosensor was characterized with FE‐SEM, EIS, and CV techniques. The ds‐DNA/PAMAM/RGO/PGE was used as a working electrode to study the interaction between the RTX and salmon sperm ds‐DNA by DPV technique. Because of the interaction between the drug and DNA leads to a decrease in the guanine oxidation peak current, it was used as an indicator for the determination of the RTX. Under the optimized experimental conditions, a wide linear relationship between RTX concentration and guanine signal was obtained within the range of 7.0 to 60.0 μmol L−1 and 60.0 to 300.0 μmol L−1 with a low detection limit (0.56 μmol L−1). To clarify the interaction mechanism between the RTX and the ds‐DNA, DPV and UV‐Vis measurements were used. The reproducibility, stability, and performance of the constructed biosensor was examined by quantitative measuring RTX in pharmaceutical and human serum samples with good precision (RSD; 2.0–6.0 %) and acceptable recoveries (100.04–101.95 %).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call