Abstract
Terahertz time-domain spectroscopy was first used to establish a correlation with the whole-rock iron (TFe) content in different depths of the Bayan Obo protolith. Compared with element content obtained by the traditional method of X-ray fluorescence spectroscopy (XRF), a similar tendency of the absorption coefficient and refractive index is presented. Furthermore, three machine learning algorithms, namely, partial least squares regression (PLSR), random forest (RF), and multi-layer perceptron (MLP), were used to develop a quantitative analytical model for TFe content of the protolith minerals. Among the three algorithms, MLP has the highest detection accuracy, with a model coefficient of determination R 2 reaching up to 0.945. These findings demonstrate that terahertz time-domain spectroscopy can be used to rapidly quantify the TFe elemental content of protolith, providing a method of detecting the content of mineral components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.