Abstract

In this study, we examined the use of CdSe aqueous quantum dots (AQDs) each conjugated to three streptavidin as a fluorescent label to image Tn antigen expression in various breast tissues via a sandwich staining procedure where the primary monoclonal anti-Tn antibody was bound to the Tn antigen on the tissue, a biotin-labeled secondary antibody was bound to the primary anti-Tn antibody, and finally the streptavidin-conjugated AQDs were bound to the biotin on the secondary antibody. We evaluated the AQD staining of Tn antigen on tissue microarrays consisting of 395 cores from 115 cases including three tumor cores and one normal-tissue core from each breast cancer case and three tumor cores from each benign case. The results indicated AQD-Tn staining was positive in more than 90% of the cells in the cancer cores but not the cells in the normal-tissue cores and the benign tumor cores. As a result, AQD-Tn staining exhibited 95% sensitivity and 90% specificity in differentiating breast cancer against normal breast tissues and benign breast conditions. These results were better than the 90% sensitivity and 80% specificity exhibited by the corresponding horse radish peroxidase (HRP) staining using the same antibodies on the same tissues and those of previous studies that used different fluorescent labels to image Tn antigen. In addition to sensitivity and specificity, the current AQD-Tn staining with a definitive threshold was quantitative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.