Abstract

Net primary production (NPP) is an essential component of the terrestrial carbon cycle and an essential factor of ecological processes. In global change research, it was the core content to study the driving forces of NPP change. In this paper, we focused on the Southwest Karst area of China and analyzed the response mechanisms of NPP to topography, land-use types, climatic change, and human activities. Our results showed that (1) changes in elevation and slope lead to significant differences in the spatial distribution of NPP. With the increase of elevation and slope, NPP first increased and then decreased, their critical values were 2000m and 15°, respectively. (2) NPP varied significantly among different land-use types. The average NPP of the forest was the highest, and the average NPP of cultivated land increased fastest. (3) Temperature and precipitation had the most substantial influence on NPP, both of them promoted the increase of NPP, and the effect of temperature was more obvious in the Southwest Karst area. (4) Ecological engineering significantly promoted the change of NPP, while animal husbandry significantly inhibited the change of NPP. (5) There were significant spatial differences in the driving effects and corresponding contributions of climatic change and human activities; both of them promoted the increase of NPP in the Southwest Karst area of China. Under climatic change and human activities, NPP increased by 1.24 gC·m-2·year-1 and 2.29 gC·m-2·year-1, respectively. The contributions rates of climatic change and human activities separately accounted for 35% and 65%. The contribution of human activities on NPP was much higher than that of climatic change in the Southwest Karst area, and the results suggested that we should focus on the role of human activities on NPP change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call