Abstract

The Northern Till is a thick (>65 m) deformation till underlying some 7500 km 2 of Southern Ontario, Canada including the Peterborough Drumlin Field. It was deposited below the Lake Ontario ice stream of the Laurentide Ice Sheet. The till rests on glaciotectonized aquifer sediments and consists of multiple beds of till up to 6 m thick. These are separated by boulder lags, sometimes in the form of striated pavements, with thin (<30 cm) interbeds of poorly sorted waterlaid sand. The composite till stratigraphy indicates ‘punctuated aggradation’ where the subglacial bed was built up incrementally by the repeated ‘immobilization’ of deforming overpressured till layers. Boulders and sands indicate pauses in subglacial aggradation marked by sluggish sheet flows of water that reworked the top of the underlying till. Interbeds are laterally extensive and correlated using downhole electrical conductivity, core recovery and natural gamma data. A 3-D finite element model (FEFLOW) using data from 200 cored and geophysically logged boreholes, and a large digital water well dataset of 3400 individual records shows that the till functions as a ‘leaky aquitard’ as a consequence of water flow through interbeds. It is proposed that interbeds played a similar role in the subglacial hydraulic system below the Laurentide Ice Sheet by allowing drainage of excess porewater pressures in deforming sediment and promoting deposition of till. This is in agreement with theoretical studies of deforming bed dynamics and observations at modern glaciers where porewater in the deforming layer is discharged into underlying aquifers. In this way, the presence of interbeds may be fundamental in retarding downglacier transport of deforming bed material thereby promoting the build-up of thick subglacial till successions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.