Abstract
Although PCR and RT-PCR provided a valuable approach for detection of pathogens, the high level of sensitivity of these assays also makes them prone to false positive results. In addition to cross-contamination with true positive samples, false positive results are also possible due to "carry-over" contamination of samples with amplicon DNA generated by previous reactions. To reduce this source of false positives, amplicon generated by reactions in which dUTP was substituted for dTTP can be degraded by uracil DNA glycosylase (UNG). UNG does not degrade RNA but will cleave contaminating uracil-containing DNA while leaving thymine-containing DNA intact. The availability of heat-labile UNG makes use of this approach feasible for RT-PCR. In this study, real-time RT-PCR was used to quantify UNG degradation of amplicon DNA and the effect of UNG on RNA detection. Using the manufacturers' recommended conditions, complete degradation of DNA was not observed for samples containing 250 copies of amplicon DNA. Doubling the UNG concentration resulted in degradation of the two lowest concentrations of DNA tested, but also resulted in an increase of 1.94 cycles in the CT for RNA detection. To improve DNA degradation while minimizing the effect on RNA detection, a series of time, temperature and enzyme concentrations were evaluated. Optimal conditions were found to be 0.25 U UNG per 25 μl reaction with a 20 min, 30°C incubation prior to RT-PCR. Under these conditions, high concentrations of amplicon DNA could be degraded while the CT for RNA detection was increased by 1.2 cycles.
Highlights
Molecular techniques have provided a valuable approach for detection of pathogens in both human and veterinary medicine [1,2,3,4,5]
Effect of uracil DNA glycosylase (UNG) concentration on DNA degradation and RTPCR amplification of RNA To assess the effect of UNG on DNA degradation and RNA detection, reactions were performed under conditions recommended but the supplier of UNG (Table 1)
The amplicon DNA was from a previous reverse transcription (RT)-PCR reaction in which deoxyuridine triphosphate (dUTP) was used in place of deoxythymidine triphosphate (dTTP)
Summary
Molecular techniques have provided a valuable approach for detection of pathogens in both human and veterinary medicine [1,2,3,4,5]. As with any diagnostic technique, quality control of individual steps is critical to ensure the accuracy of results. When performing diagnostic PCR or reverse transcription (RT)-PCR, elimination of false positive results is crucial to ensuring diagnostic accuracy. False positives can occur due to contamination at any point in sample preparation and amplification procedures [6]. Cross-contamination between positive and negative samples may occur during sample collection, nucleic acid extraction, PCR or RT-PCR reaction assembly or during agarose gel electrophoresis analysis. In addition to contamination by positive samples, false positive results are possible due to contamination of samples at any (page number not for citation purposes)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.