Abstract

We have previously described a technique to quantify surface fibrillatory changes in osteoarthritic articular cartilage. In that study, the angular distribution of the scattered acoustic field from an insonifying source directly related to the distribution of surface fibrillatory changes. In the current study, we demonstrate a more sensitive method to quantify surface roughness, the effect of global surface curvature in estimating surface roughness and the utility of using focused transducers in circumventing this potential problem for in vivo work. Phantoms composed of acrylic rods with and without sandpaper grit (about 15 to 72 μ, mean particle size) applied to the surface were scanned. A more robust angular scattering technique to measure the angle dependent data was employed, in which the integrated squared pressure amplitude over a finite time window (mean power) was measured as a function of incident acoustic angle for varying surface roughnesses and radii of curvature. We show that the potential dynamic range for making roughness discriminations diminishes with decreasing radius of curvature of the acrylic rod phantoms using an unfocused transducer. This effect is minimized with use of a focused transducer. Roughness effects are most evident at sufficiently large angles where incoherent scattering dominates. We conclude that the roughness of cylindrically curved surfaces can be quantitatively assessed using a focused ultrasound beam at sufficiently large incident angles, given that the focal spot size is sufficiently smaller than the radius of curvature of the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.