Abstract

The elongational viscosity of three tubular and five autoclave low-density polyethylene (LDPE) melts is analyzed, and quantitative comparison of the strain-hardening characteristics is made by using the molecular stress function model. This is based on a new strain-energy function, which assumes that the total strain energy of a branched section of a macromolecule is given by the addition of the strain energies of the individual chain segments contained in this section. The model employs only two nonlinear material parameters: one parameter describes the average number of crosslinked chain segments, which occupy the same tube section, and determines the slope of the elongational viscosity after inception of strain hardening. The second parameter indicates the maximum relative stretch of the chain segments and determines the steady-state (plateau) value of the elongational viscosity. Both parameters depend on the complex branching topology of LDPE melts. While quantitative relationships between branching structure and the two nonlinear parameters are not yet available, the results of this comparison seem to indicate that the more tree-like structure of autoclave LDPE leads to a higher density of crosslinked chain segments in the same tube section than in the case of LDPE polymerized in tubular reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.