Abstract

The quality of preloaded Wang resins is very important for the success of solid-phase peptide syntheses (SPPS). A critical factor is the capping of remaining hydroxyl groups after loading with the first amino acid, since these free alcohols lead to truncated sequences during the following SPPS steps. Because the detection of hydroxyl groups by color tests is difficult and unreliable, the capping efficiency is often controlled by time-consuming peptide test syntheses. Here, we describe a two-dimensional, high resolution magic angle spinning NMR method for the quantitative determination of remaining 4-alkoxybenzyl alcohols in Fmoc-Xaa-Wang resins with a detection limit of 1 mol-%. The NMR method was validated with samples of known ratios between Fmoc-Ala-Wang and 4-alkoxybenzylalcohol resin. Application to a set of preloaded Fmoc-Ala- and Fmoc-Thr(tBu)-Wang test resins demonstrated that the full range of essential amino acids can be quantified without further spectrometer calibration. Compared to established test synthesis protocols, the NMR method represents not only advantages in terms of time and cost savings but also eliminates all inaccuracies due to further sample treatment like SPPS and cleavage from the resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.