Abstract

The objective was to capture levodopa-induced dyskinesia (LID) in patients with Parkinson's disease (PD) using body-worn motion sensors. Dopaminergic treatment in PD can induce abnormal involuntary movements, including choreatic dyskinesia (brief, rapid, irregular movements). Adjustments in medication to reduce LID often sacrifice control of motor symptoms, and balancing this tradeoff poses a significant challenge for management of advanced PD. Fifteen PD subjects with known LID were recruited and instructed to perform two stationary motor tasks while wearing a compact wireless motion sensor unit positioned on each hand over the course of a levodopa dose cycle. Videos of subjects performing the motor tasks were later scored by expert clinicians to assess global dyskinesia using the modified Abnormal Involuntary Rating Scale (m-AIMS). Kinematic features were extracted from motion data in different frequency bands (1-3Hz and 3-8Hz) to quantify LID severity and to distinguish between LID and PD tremor. Receiver operator characteristic analysis was used to determine thresholds for individual features to detect the presence of LID. A sensitivity of 0.73 and specificity of 1.00 were achieved. A neural network was also trained to output dyskinesia severity on a 0 to 4 scale, similar to the m-AIMS. The model generalized well to new data (coefficient of determination= 0.85 and mean squared error= 0.3). This study demonstrated that hand-worn motion sensors can be used to assess global dyskinesia severity independent of PD tremor over the levodopa dose cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call