Abstract

A sensitive and non-invasive method is necessary to diagnose non-alcoholic fatty liver disease (NAFLD). We explored the iron-adjustive T1 (aT1) ability to quantify the degree of liver inflammation and evaluate the spatial heterogeneity. Male C57BL/6J mice were randomly categorized as the NAFLD model (n=40), NAFLD-related liver cirrhosis model (n=20), and normal mice (n=10). T1 and T2* maps were acquired using a 3.0T scanner of magnetic resonance imaging (MRI) and aT1 maps through post-processing corrected iron's effect on T1 using T2*. Pathological changes in the left and right liver lobes were assessed using the Non-alcoholic Steatohepatitis-Clinical Research Network scoring system, though hepatic ballooning lesion were rare in models. Spearman's and partial correlation analyses were used to evaluate correlations, and the receiver operating characteristic curve was used to analyze the diagnostic performance. aT1 was highly correlated with NAFLD activity score (NAS) (r=0.747, P<0.001) but not with the fibrosis stage when adjusted by NAS (r=-0.135, P=0.147). The area under the curve (AUC) of the aT1 value distinguishing groups with 0< NAS <4 and NAS ≥4 was 0.802. On analyzing the histogram features of aT1, the entropy, interquartile range, range, and variance were significantly different between the groups with 0< NAS <4 and NAS ≥4 (P<0.05). The entropy was the risk factor of NAS ≥4. aT1 could help evaluate the inflammatory activity in NAFLD mice unaffected by mild fibrosis, and the higher the degree of inflammation, the higher the heterogeneity of the aT1 map.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call