Abstract

- Numerous studies highlight interlaboratory performance variability in diagnostic immunohistochemistry (IHC) testing. Despite substantial improvements over the years, the inability to quantitatively and objectively assess immunostain sensitivity complicates interlaboratory standardization. - To quantitatively and objectively assess the sensitivity of the immunohistochemical stains for human epidermal growth factor receptor type 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) across IHC laboratories in a proficiency testing format. We measure sensitivity with parameters that are new to the field of diagnostic IHC: analytic response curves and limits of detection. - Thirty-nine diagnostic IHC laboratories stained a set of 3 slides, one each for HER2, ER, and PR. Each slide incorporated a positive tissue section and IHControls at 5 different concentrations. The IHControls comprise cell-sized clear microbeads coated with defined concentrations of analyte (HER2, ER, and/or PR). The laboratories identified the limits of detection and then mailed the slides for quantitative assessment. - Each commercial immunostain demonstrated a characteristic analytic response curve, reflecting strong reproducibility among IHC laboratories using the same automation and reagents prepared per current Good Manufacturing Practices. However, when comparing different commercial vendors (using different reagents), the data reveal up to 100-fold differences in analytic sensitivity. For proficiency testing purposes, quantitative assessment using analytic response curves was superior to subjective interpretation of limits of detection. - Assessment of IHC laboratory performance by quantitative measurement of analytic response curves is a powerful, objective tool for identifying outlier IHC laboratories. It uniquely evaluates immunostain performance across a range of defined analyte concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.