Abstract

This study aimed to develop a novel in silico modeling and simulation that considers the disintegration rate in the stomach to predict the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs. Oxatomide and manidipine hydrochloride were used as model drugs. First, the in vitro disintegration rate and dissolution rate were determined in biorelevant media that simulate the gastrointestinal fluids in fasted humans using a USP apparatus II paddle dissolution tester. Next, the oral absorption of the dosage forms was predicted using the novel simulation model coupled with not only the dissolution rate but also the estimated disintegration rate. As the in vitro disintegration time was 45 min or longer for both drugs in Fasted State Simulated Gastric Fluid, the disintegration rate of these dosage forms was considered slow as immediate release (IR) tablets. While the predicted and observed pharmacokinetic profiles of both drugs were comparable using the new model, the conventional model, which did not consider the disintegration step, underestimated the oral absorption of both drugs. Thus, our novel simulation model coupled with the disintegration rate estimated from in vitro tests is promising for predicting the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call