Abstract
The utilization of L-shaped bends has become widespread due to their versatility and ease of application in various industrial fields. Nevertheless, the geometric configuration of these bends makes them susceptible to stress concentration in the bending zone, which can lead to wall thinning caused by accelerated corrosion. This poses a profound challenge to the bearing capacity and reliability of L-shaped bends and highlights the urgent necessity for an effective technique to assess corrosion-induced wall thinning in the bending zone. In this study, we propose a nondestructive testing (NDT) method based on ultrasonic feature guided waves (FGWs) for the evaluation of local corrosion-induced wall thinning in L-shaped bends. Propagation characteristics of FGWs in L-shaped bends were analyzed using the semi-analytical finite element (SAFE) method and perfectly matched layer (PML) technique. Time-reversal (TR) method was employed to address the dispersion and multi-modes phenomenon of the selected guided wave modes and improve the signal-to-noise ratio (SNR) of measured FGW signals. Enhanced SNR of two types of FGW modes signals at different frequencies were verified by experimental and numerical results. Obtained results reveal that FGWs can effectively detect corrosion-induced wall thinning inside L-shaped bends, with improving the signal reflection coefficient by TR method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.