Abstract

The objective of this study was to evaluate the association betweenthe quantitative assessment of background parenchymal enhancement rate (BPER) and breast cancer. From 14,033 consecutive patients who underwent breast MRI in our center, we randomly selected 101 normal controls. Then, we selected 101 women with benign breast lesions and 101 women with breast cancer who were matched for age and menstruation status. We evaluated BPER at early (2 minutes), medium (4 minutes) and late (6 minutes) enhanced time phases of breast MRI for quantitative assessment. Odds ratios (ORs) for risk of breast cancer were calculated using the receiver operating curve. The BPER increased in a time-dependent manner after enhancement in both premenopausal and postmenopausal women. Premenopausal women had higher BPER than postmenopausal women at early, medium and late enhanced phases. In the normal population, the OR for probability of breast cancer for premenopausal women with high BPER was 4.1 (95% CI: 1.7–9.7) and 4.6 (95% CI: 1.7–12.0) for postmenopausal women. The OR of breast cancer morbidity in premenopausal women with high BPER was 2.6 (95% CI: 1.1–6.4) and 2.8 (95% CI: 1.2–6.1) for postmenopausal women. The BPER was found to be a predictive factor of breast cancer morbidity. Different time phases should be used to assess BPER in premenopausal and postmenopausal women.

Highlights

  • IntroductionEffective early detection by imaging studies remains critical to decrease mortality rates, in women at high risk for developing breast cancer

  • Breast cancer is the most common female malignancy worldwide [1,2,3]

  • Further studies indicated that three-dimensional (3D) tomography would be more accurate in evaluating breast density than the twodimensional data obtained by mammography [8]

Read more

Summary

Introduction

Effective early detection by imaging studies remains critical to decrease mortality rates, in women at high risk for developing breast cancer. In the late 1980s, Gail developed a series of evaluations and a prediction model for high-risk breast cancer [4], which has been widely used. Mammographic density has been related with the risk of developing breast cancer, and this parameter has been widely used for the prevention and early detection of breast cancer [6, 7]. The risk of breast cancer in women with high mammographically breast dense is about 3 to 5 times higher than that with predominantly low mammographically breast dense. Further studies indicated that three-dimensional (3D) tomography would be more accurate in evaluating breast density than the twodimensional data obtained by mammography [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call