Abstract

BackgroundThe kinetoplastid parasite, Azumiobodo hoyamushi, is the causative agent of soft tunic syndrome (STS) in ascidians and leads to their mass mortality in Korean waters. This study was conducted to quantify A. hoyamushi density during the development of STS in the tunics of ascidians (Halocynthia roretzi) using real-time polymerase chain reaction (qPCR).FindingsThe infection intensity of A. hoyamushi, as measured by qPCR, varied depending on the part of the tunic analyzed, as well as the stage of STS development. The highest infection intensity was recorded in the tunics of the siphons. The infection intensity of A. hoyamushi in the siphons was only 2.9 cell/tunic (area, 0.25 cm2) or 106.0 cell/gram tunic (GT) in the early phase of STS, but this value increased dramatically to 16,066 cells/tunic (0.25 cm2) or 617,004 cell/GT at the time of death. The number of A. hoyamushi parasites increased gradually and their distribution spread from the siphons to the other parts of the tunics.ConclusionsqPCR enabled the quantitation of A. hoyamushi and the results revealed that parasite density increased as STS progressed. In addition, our results suggested that the siphons might function as the portal of entry for A. hoyamushi during infection.

Highlights

  • The kinetoplastid parasite, Azumiobodo hoyamushi, is the causative agent of soft tunic syndrome (STS) in ascidians and leads to their mass mortality in Korean waters

  • Conclusions: qPCR enabled the quantitation of A. hoyamushi and the results revealed that parasite density increased as STS progressed

  • Our results suggested that the siphons might function as the portal of entry for A. hoyamushi during infection

Read more

Summary

Introduction

The kinetoplastid parasite, Azumiobodo hoyamushi, is the causative agent of soft tunic syndrome (STS) in ascidians and leads to their mass mortality in Korean waters. Conclusions: qPCR enabled the quantitation of A. hoyamushi and the results revealed that parasite density increased as STS progressed. Over the past 20 years, soft tunic syndrome (STS) has been plaguing the Gyeongnam Province area on the southern coast of Korea, which has most of the country’s ascidian farms, causing mass mortality of the ascidians.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.