Abstract

To evaluate the use of three extrapolated semisolid magnetization transfer reference (EMR) methods to quantify amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) signals in human glioma. Eleven patients with high-grade glioma were scanned at 3 Tesla. aEMR(2) (asymmetric magnetization-transfer or MT model to fit two-sided, wide-offset data), sEMR(2) (symmetric MT model to fit two-sided, wide-offset data), and sEMR(1) (symmetric MT model to fit one-sided, wide-offset data) were assessed. ZEMR and experimental data at 3.5 ppm and -3.5 ppm were subtracted to calculate the APT and NOE signals (APT(#) and NOE(#)), respectively. The aEMR(2) and sEMR(1) models provided quite similar APT(#) signals, while the sEMR(2) provided somewhat lower APT(#) signals. The aEMR(2) had an erroneous NOE(#) quantification. Calculated APT(#) signal intensities of glioma (∼4%), much larger than the values reported previously, were significantly higher than those of edema and normal tissue. Compared with normal tissue, gadolinium-enhancing tumor cores were consistently hyperintense on the APT(#) maps and slightly hypointense on the NOE(#) maps. The sEMR(1) model is the best choice for accurately quantifying APT and NOE signals. The APT-weighted hyperintensity in the tumor was dominated by the APT effect, and the MT asymmetry at 3.5 ppm is a reliable and valid metric for APT imaging of gliomas at 3T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call