Abstract

MRI pulse sequences and imaging parameters substantially influence the variation of MRI radiomics features, thus impose a critical challenge on MRI radiomics reproducibility and reliability. This study aims to prospectively investigate the impact of various imaging parameters on MRI radiomics features in a 3D T2-weighted (T2W) turbo-spin-echo (TSE) pulse sequence for MR-guided-radiotherapy (MRgRT). An anthropomorphic phantom was scanned using a 3D-T2W-TSE MRgRT sequence at 1.5T under a variety of acquisition imaging parameter changes. T1 and T2 relaxation times of the phantom were also measured. 93 first-order and texture radiomics features in the original and 14 transformed images, yielding 1,395 features in total, were extracted from 10 volumes-of-interest (VOIs). The percentage deviation (d%) of radiomics feature values from the baseline values and intra-class correlation coefficient (ICC) with the baseline were calculated. Robust radiomics features were identified based on the excellent agreement of radiomics feature values with the baseline, i.e., the averaged d% <5% and ICC >0.90 in all VOIs for all imaging parameter variations. The radiomics feature values changed considerably but to different degrees with different imaging parameter adjustments, in the ten VOIs. The deviation d% ranged from 0.02% to 321.3%, with a mean of 12.5% averaged for all original features in all ten VOIs. First-order and GLCM features were generally more robust to imaging parameters than other features in the original images. There were also significantly different radiomics feature values (ANOVA, P<0.001) between the original and the transformed images, exhibiting quite different robustness to imaging parameters. 330 out of 1395 features (23.7%) robust to imaging parameters were identified. GLCM and GLSZM features had the most (42.5%, 153/360) and least (3.8%, 9/240) robust features in the original and transformed images, respectively. This study helps better understand the quantitative dependence of radiomics feature values on imaging parameters in a 3D-T2W-TSE sequence for MRgRT. Imaging parameter heterogeneity should be considered as a significant source of radiomics variability and uncertainty, which must be well harmonized for reliable clinical use. The identified robust features to imaging parameters are helpful for the pre-selection of radiomics features for reliable radiomics modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.