Abstract
The last decade has witnessed significant advances in the application of mathematical and computational models to biological systems, especially to cancer biology. Here, we present stochastic and deterministic models describing tumour growth based on the cancer stem cell hypothesis, and discuss the application of these models to the epithelial–mesenchymal transition. In particular, we discuss how such quantitative approaches can be used to validate different possible scenarios that can lead to an increase in stem cell activity following induction of epithelial–mesenchymal transition, observed in recent experimental studies on human breast cancer and related cell lines. The utility of comparing mammosphere data to computational mammosphere simulations in elucidating the growth characteristics of mammary (cancer) stem cells is discussed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.