Abstract

Due to the harmfulness of melamine to human, the quantitative detection of melamine in egg is very necessary. In the present study, the surface enhanced Raman spectra technology combined with chemometric analysis method was used to conduct melamine quantitative detection in egg white. Firstly, the melamine egg sample could be got by the method of artificial feeding hens usingdifferent feeding formulation. Then the surface enhanced Raman spectra of egg white was determined using portable Raman spectroscopy (Opto Trace RamTracer-200) and Raman enhancement reagents, and the melamine content within the white eggs was measured with gas chromatography mass spectrometry technology. The software of Raman Analyzer was used for baseline correction of Raman spectra. The correlation coefficient method was used to choose 320 spectral variables from the surface enhanced Raman spectroscopy as input variables to establish partial least squares quantitative calibration model . And the peaks-decomposition method was used to establish peaks-decomposition quantitative calibration model. Both models selected 90 and 44 samples respectively as calibration sets and validation sets during model establishment, and both models achieved good prediction effect. The determination coefficient between predicted values of partial least squares quantitative calibration model and measured values of gas chromatography mass spectrometry was 0.856, and root mean square error of prediction was 1.547. The determination coefficient was 0.947 and RMSEP was 0.893 for the peaks-decomposition quantitative calibration model. This study demonstrated that the method can effectively quantitatively detect melamine in eggs. Testing a sample only takes 15 minutes, which can provide a new way for the melamine egg detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.