Abstract
Increasing evidence has demonstrated that cells are individually heterogeneous. Advancing the technologies for single-cell analysis will improve our ability to characterize cells, study cell biology, design and screen drugs, and aid cancer diagnosis and treatment. Most current single-cell protein analysis approaches are based on fluorescent antibody-binding technology. However, this technology is limited by high background and cross-talk of multiple tags introduced by fluorescent labels. Stable isotope labels used in mass cytometry can overcome the spectral overlap of fluorophores. Nevertheless, the specificity of each antibody and heavy-metal-tagged antibody combination must be carefully validated to ensure detection of the intended target. Thus, novel single-cell protein analysis methods without using labels are urgently needed. Moreover, the labeling approach targets already known motifs, hampering the discovery of new biomarkers relevant to single-cell population variation. Here, we report a combined microfluidic and matrix-assisted laser desorption and ionization (MALDI) mass spectrometric approach for the analysis of protein biomarkers suitable for small cell ensembles. All necessary steps for cell analysis including cell lysis, protein capture, and digestion as well as MALDI matrix deposition are integrated on a microfluidic chip prior to the downstream MALDI-time-of-flight (TOF) detection. For proof of principle, this combined method is used to assess the amount of Bcl-2, an apoptosis regulator, in metastatic breast cancer cells (MCF-7) by using an isotope-labeled peptide as an internal standard. The proposed approach will eventually provide a new means for proteome studies in small cell ensembles with the potential for single-cell analysis and improve our ability in disease diagnosis, drug discovery, and personalized therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.