Abstract

Estimation of bile tolerance, endurance to gastric and intestinal environment and adhesion potential to intestinal cells are significant selection criteria for probiotic lactic acid bacteria (LAB). In this paper, the probiotic potential of native bacteriocin-producing LAB isolated previously from indigenous source has been determined through quantitative approaches. Among fifteen anti-listerial bacteriocin-producing native LAB, ten strains were found to be bile tolerant. The presence of bile salt hydrolase (bsh) gene in native Lactobacillus plantarum strains was detected by PCR and confirmed by nucleic acid sequencing of a representative amplicon. Interestingly, three native LAB strains exhibited significant viability in simulated gastric fluid, analogous to the standard LAB Lactobacillus rhamnosus GG, while an overwhelming majority of the native LAB strains demonstrated the ability to survive and remain viable in simulated intestinal fluid. Quantitative adhesion assays based on conventional plating method and a fluorescence-based method revealed that the LAB isolates obtained from dried fish displayed significant in vitro adhesion potential to human adenocarcinoma HT-29 cells, and the adhesion level was comparable to some of the standard probiotic LAB strains. The present study unravels putative probiotic attributes in certain bacteriocin-producing LAB strains of non-human origin, which on further in vivo characterization could find specific applications in probiotic food formulations targeted for health benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call