Abstract

Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data. Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and the depth-averaged suspended sediment concentration. On this basis, the quantitative application integrated model on remote sensing of suspended sediment is developed. By using this model as well as multi-temporal remote sensing images, multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted. The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less, which can satisfy the engineering requirements of channel deposition calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.